Powder Metallurgy High-Speed Steel ASP® 2005

ASP® 2005 is the best choice for high toughness, hardness and wear resistance.

STANDARDS

- > EN 10027-1: PMHS 3-3-4
- > EN 10027-2: 1.3377

DELIVERY HARDNESS

- > Typical soft annealed hardness is 250 HB
- > Cold-drawn and cold-rolled material is typically 10-40 HB harder

CHEMICAL COMPOSITION	С	Cr	Мо	W	Со	V
Safety datasheet available	1.50	4.0	2.5	2.5	-	4.0

APPLICATIONS

- > Cold work tools: powder compacting tools, cold extrusion tools, cold-heading dies, fine blanking tools
- > Plastic injection moulders
- > Rolls
- > Warm applications: extrusion dies, forging dies and punches

FORM SUPPLIED

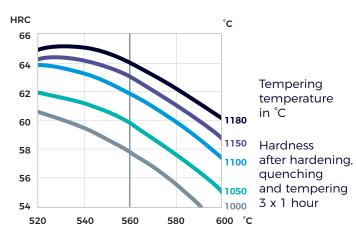
- > Round bars
- > Flat & square bars

Available surface conditions: drawn, ground, peeled, rough-machined, hot-rolled.

HEAT TREATMENT

- > Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- > Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- > Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitizing at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- > Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature < 25°C between temperings.

PROCESSING


ASP® 2005 can be worked as follows:

- > machining (grinding, turning, milling)
- > polishing
- > hot forming
- > electrical discharge machining
- > welding (special procedure including preheating and filler materials of base material composition)

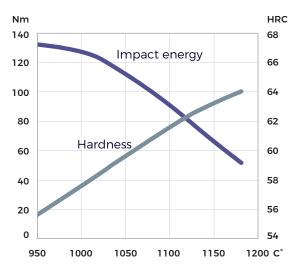
GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

GUIDELINES FOR HARDENING

SURFACE TREATMENT

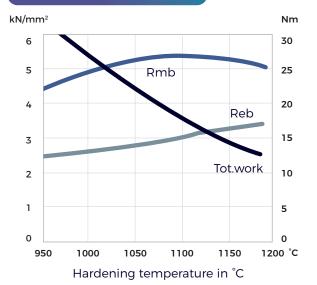
The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.


PROPERTIES

PHYSICAL PROPERTIES

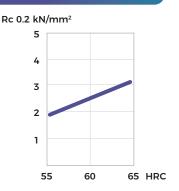
Temperature	20°C	400°C	600°C
Density g/cm³ (1)	7.8	7.7	7.6
Modulus of elasticity kN/mm ^{2 (2)}	220	195	175
Thermal expansion ratio per ${}^{\circ}C^{(2)}$	-	12.1x10 ⁻⁶	12.7x10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg°C (2)	420	510	600

⁽¹⁾ Soft annealed


IMPACT TOUGHNESS

Hardening temperature in °C

Original dimension Ø 16 mm Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm


4-POINT BEND STRENGTH

Original dimension Ø 6 mm Tempering 3 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

⁽²⁾ Hardened 1180°C and tempered 560°C, 3 x 1 hour