# Powder Metallurgy High-Speed Steel ASP® 2011



ASP<sup>®</sup> 2011 is a high vanadium grade for wear applications.

#### **STANDARDS**

> ASTM: AISI A11

#### **DELIVERY HARDNESS**

- > Typical soft annealed hardness is 270 HB
- > Cold-drawn material is typically 10-40 HB harder

| CHEMICAL COMPOSITION       | С    | Cr  | Мо  | W | Со | V   |
|----------------------------|------|-----|-----|---|----|-----|
| Safety datasheet available | 2.48 | 5.3 | 1.2 | - | -  | 9.5 |

## **APPLICATIONS**

- > Knives
- > Wear parts
- > Cold work

### **FORM SUPPLIED**

> Coils

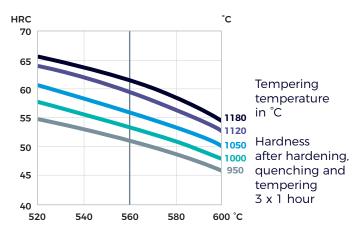
- > Discs
- > Coarse round bars
- > Pieces cut from sheets
- > Flat and square bars

Available surface conditions: peeled, rough machined, cold rolled, hot rolled.

#### **HEAT TREATMENT**

- > Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- > Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- > Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitizing at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- > Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature < 25°C between temperings.

#### **PROCESSING**


ASP® 2011 can be worked as follows:

- > machining (grinding, turning, milling)
- > polishing
- > hot forming
- > electrical discharge machining
- > welding (special procedure including preheating and filler materials of base material composition)

#### GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

#### **GUIDELINES FOR HARDENING**

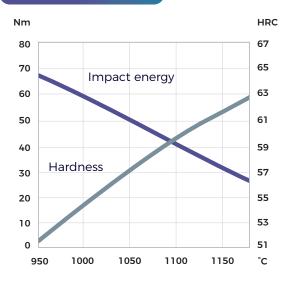


#### **SURFACE TREATMENT**

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.



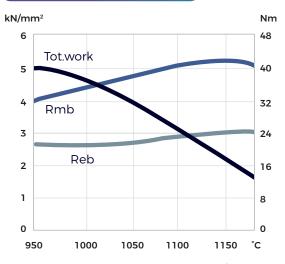



## PROPERTIES

#### **PHYSICAL PROPERTIES**

| Temperature                                  | 20°C | 400°C                 | 600°C                 |
|----------------------------------------------|------|-----------------------|-----------------------|
| Density g/cm³ (1)                            | 7.4  | 7.3                   | 7.3                   |
| Modulus of elasticity kN/mm <sup>2 (2)</sup> | 220  | 197                   | 177                   |
| Thermal expansion ratio per °C (2)           | -    | 11.8x10 <sup>-6</sup> | 12.3x10 <sup>-6</sup> |
| Thermal conductivity W/m°C (2)               | 20   | 25                    | 26                    |
| Specific heat J/kg°C (2)                     | 420  | 510                   | 600                   |

<sup>(1)</sup> Soft annealed

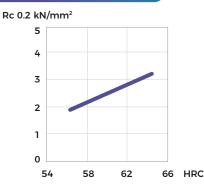

#### **IMPACT TOUGHNESS**

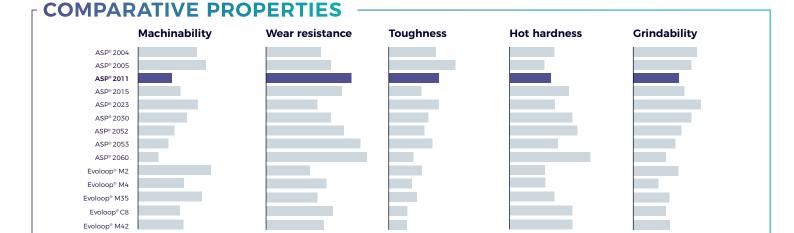


Hardening temperature in °C

Original dimension 9 x 12 mm Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

#### **4-POINT BEND STRENGTH**





Hardening temperature in °C

Original dimension Ø 7.5 mm Tempering 3 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

NB: High quality surface Rmb = Ultimate bend strength in kN/mm<sup>2</sup> Reb = Bend yield strength in kN/mm<sup>2</sup> Tot. work = Total work in Nm

#### **COMPRESSION YIELD STRESS**





<sup>(2)</sup> Hardened 1180°C and tempered 560°C, 3 x 1 hour