Powder Metallurgy High-Speed Steel ASP® 2051

ASP® 2051 is a tungsten powder metallurgy high speed steel containing 10 percent cobalt. ASP® 2051 is harder than many high speed steels and in addition it has a good toughness. ASP® 2051 is used mainly for tools requiring maximum abrasion a resistance and medium toughness.

STANDARDS

- > EN 10027-1: PMHS 10-4-3-10
- > EN 10027-2: 1.3207
- > USA: AISI M51
- > SWEDEN: SS 2736
- > JIS: SKH57
- > FRANCE: AFNOR Z130WKCDV10.10.4.4.3

DELIVERY HARDNESS

- > Typical soft annealed hardness is 280 HB
- > Cold-drawn material is typically 10-40 HB harder

CHEMICAL COMPOSITION

Safety datasheet available

С	Cr	Мо	W	Co	V	
1.27	4.0	3.6	9.5	10.0	3.2	

APPLICATIONS

> Toolbits

- > Milling cutters
- > Form tools
- > Bandsaws
- > Cold work tools

FORM SUPPLIED

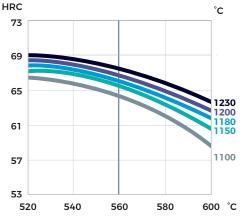
> Bi-metal edge

Available surface conditions: drawn, ground, peeled, rough-machined, cold-rolled, hot-rolled.

HEAT TREATMENT

- > Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- > Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- > Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- > Tempering at 560°C three times for at least 1 hour each time.

PROCESSING


ASP® 2051 can be worked as follows:

- > machining (grinding, turning, milling)
- > polishing
- > hot forming
- > electrical discharge machining
- > welding (special procedure including preheating and filler materials of base material composition)

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

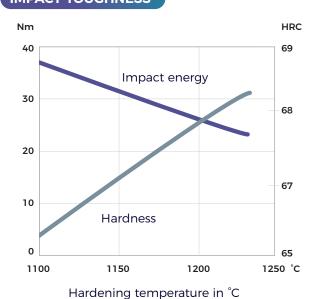
GUIDELINES FOR HARDENING

Tempering temperature in °C

Hardness after hardening, quenching and tempering 3 x 1 hour

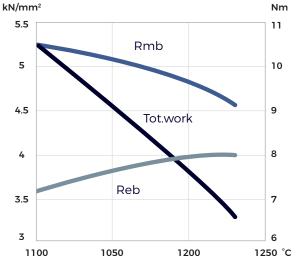
SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.


PROPERTIES

PHYSICAL PROPERTIES

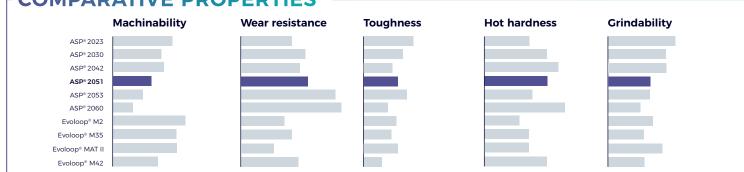
Temperature	20°C	400°C	600°C
Density g/cm³ (1)	8.2	8.1	8.1
Modulus of elasticity kN/mm ^{2 (2)}	240	215	190
Thermal expansion ratio per °C (2)	-	10.2x10 ⁻⁶	10.9x10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg°C (2)	420	510	600


⁽¹⁾ Soft annealed

IMPACT TOUGHNESS

Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH



Hardening temperature in °C

Original dimension Ø 6 mm Tempering 3 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

⁽²⁾ Hardened 1180°C and tempered 560°C, 3 x 1 hour