=BASTEEI

ASP[®] 2052 is a high W-alloyed grade for high performance cutting tools and cold work applications like fine blanking requiring high hardness.

STANDARDS

> EN 10027-1: PMHS 11-2-5-8

DELIVERY HARDNESS

> Typical soft annealed hardness is 290 HB

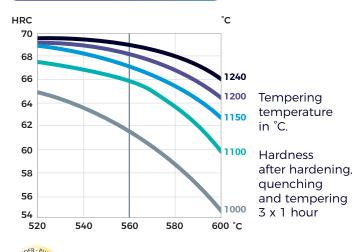
> Cold-drawn material is typically 10-40 HB harder

CHEMICAL COMPOSITION	С	Cr	Мо	W	Со	V
Safety datasheet available	1.67	4.8	2.0	10.5	8.0	4.9

APPLICATIONS

> End mills

> Shaper cutters


> Hobs

- > Taps
- > Fine blanking

HEAT TREATMENT

- > Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- > Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- > Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitizing at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- > Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature < 25°C between temperings.

GUIDELINES FOR HARDENING

FORM SUPPLIED

- > Coils
- > Round bars

Available surface conditions: drawn, ground, hotworked, peeled, rough-machined.

PROCESSING

ASP[®] 2052 can be worked as follows:

- > machining (grinding, turning, milling)
- > polishing
- > hot forming
- > electrical discharge machining
- > welding (special procedure including preheating and filler materials of base material composition)

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

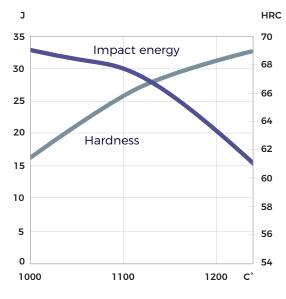
SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

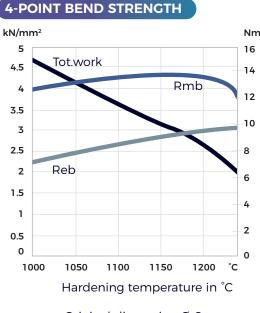
The above is for information only and does not create any binding contractual obligation:

ERASTEFI

PROPERTIES

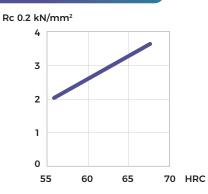

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g/cm ^{3 (1)}	8.2	8.1	8.1
Modulus of elasticity kN/mm^{2} (2)	245	218	196
Thermal expansion ratio per $^\circ\!C^{{}^{(2)}}$	-	11.2x10 ⁻⁶	11.7x10 ⁻⁶
Thermal conductivity W/m°C $^{\scriptscriptstyle(2)}$	24	28	27
Specific heat J/kg°C ⁽²⁾	420	510	600


(1) Soft annealed

(2) Hardened 1180°C and tempered 560°C, 3 x 1 hour

IMPACT TOUGHNESS


Hardening temperature in °C

Original dimension Ø 6 mm Tempering 3 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

COMPARATIVE PROPERTIES

The above is for information only and does not create any binding contractual obligations.

Original dimension 70 x 15 mm Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm