Powder Metallurgy High-Speed Steel

ASP[®]420H powder manufactured grade combines high wear resistance, from the high V and C content, with corrosion resistance from the high Cr content. Thanks to the high cleanliness obtained with the ASP[®] process, high toughness, chipping resistance, polishability and corrosion resistance are obtained.

STANDARDS
> No standardized

DELIVERY HARDNESS

> Typical soft annealed hardness is 300 HB

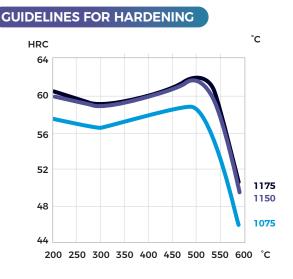
CHEMICAL COMPOSITION	С	Cr	Мо	W	Со	V
Safety datasheet available	2.30	14.5	1.0	-	-	8.7

APPLICATIONS

- > Injection moulding (corrosive and abrasive plastics)
- > Industrial knives
- > Food-related applications
- > Powder compaction
- > Wear components

HEAT TREATMENT

- > Soft annealing in a protective atmosphere at 930-970°C for 3 hours, followed by slow cooling at 10°C/h down to 750°C, then air cooling.
- > Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- > Harden at 1075°C to 1175°C for chosen hardness.
- > Temper for best corrosion resistance at 200-400°C (260°C recommended) 2 times for 2 hours each (minimum). Deep cooling after first tempering is possible and highly recommended for low temperature tempering to ensure thermal stability. Temper at 530-550°C can be used for best dimension stability and stress relieving.


SURFACE TREATMENT

ASP[®] 420H can be PVD coated.

If nitriding is required, a small diffusion zone is recommended, but avoid compound and white layers. Nitriding may improve abrasive wear resistance but can also decrease the corrosion resistance.

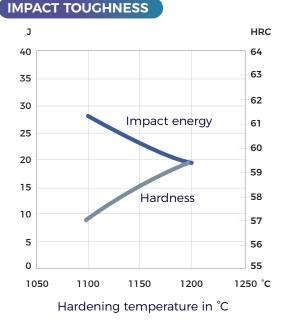
FORM SUPPLIED

- > Round bars
- > Flat & square bars

Tempering temperature in °C

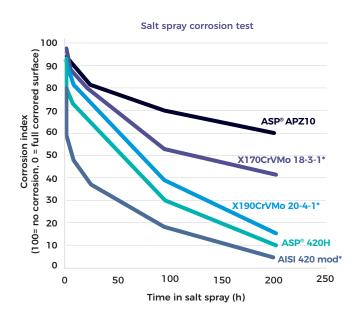
Hardness after austenitization, quenching and tempering 2 x 2 hours

Application	Hardening	Tempering
Best corrosion resistance	1075-1175°C	250-270°C
Best dimension stability and stress relieving	1075-1175°C	530-550°C


PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C
Density g/cm ^{3 (1)}	7.4
Modulus of elasticity kN/mm2 $^{\scriptscriptstyle(2)}$	215
Thermal expansion ratio per $^\circ\!C^{{}^{(2)}}$	11.0
Thermal conductivity W/m°C $^{\scriptscriptstyle(2)}$	17
Specific heat J/kg°C ⁽²⁾	-


(1) Soft annealed

(2) Hardened 1125°C and tempered 540°C, 2 x 2 hours

Original dimension 260 x 174 mm Tempering 2 x 2 hours at 540° C Unnotched test piece 7 x 10 x 55 mm

CORROSION RESISTANCE

Corrosion resistance from salt spray test of different types of Powder Metallurgy martensitic steels tempered $< 300^{\circ}$ C.

Thanks to the high cleanliness obtained with ASP[®] process, the corrosion resistance of ASP[®] 420H is good compared to other Powder Metallurgy grades of similar composition.

*Powder Metallurgy martensitic stainless steels of non-Erasteel origin with nominal composition 2.3C, 14Cr, 1Mo and 9V; 1.9C, 20Cr, 1Mo and 4V; and 1.7C, 18Cr, 1Mo and 3V.

Machinability Wear resistance Toughness Hot hardness Crindability Asp® 420H Asp® APZ10 Asp® 2011 Image: Comparison of the second seco