Conventional High-Speed Steel Evoloop® M35

Evoloop® M35 contains cobalt for increased hot hardness. The composition of Evoloop® M35 offers a good combination of toughness and hardness. Evoloop® M35 has a good machinability.

STANDARDS

- > EN 10027-1: HS 6-5-2-5
- > EN 10027-2: 1.3243
- > FRANCE: AFNOR Z90WDKCV6.5.5.4.2
- > ASTM: AISI M35
- > SWEDEN: SS 2723
- > UK: BM35

DELIVERY HARDNESS

- Typical soft annealed hardness is 260 HB
- > Cold-drawn and cold-rolled material is typically 10-40 HB harder

CHEMICAL COMPOSITION

Safety datasheet available

С	Cr	Мо	W	Со	V
0.93	4.2	5.0	6.4	4.8	1.8

APPLICATIONS

> End mills

> Cutters

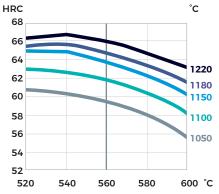
- > Broaches
- > Reamers
- > Hobs
- > Milling cutters
- SawsCold work

FORM SUPPLIED

- > Drawn wire
- > Flat bars
- > Wire rod
- > Square bars
- > Round bars
- > Strips

Available surface conditions: drawn, ground, rolled, hot rolled, cold rolled, peeled, turned.

HEAT TREATMENT


- > Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C perhour down to 700°C, then air cooling.
- > Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- > Hardening in a protective atmosphere with pre-heating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness.
- > Tempering at 560°C twice for at least 1 hour each time.

PROCESSING

Evoloop® M35 can be worked as follows:

- > machining (grinding, turning, milling)
- > polishing
- > hot forming
- > electrical discharge machining
- > welding (special procedure including preheating and filler materials of base material composition)

GUIDELINES FOR HARDENING

Tempering temperature in °C Hardness after hardening, quenching and tempering 2 x 1 hour

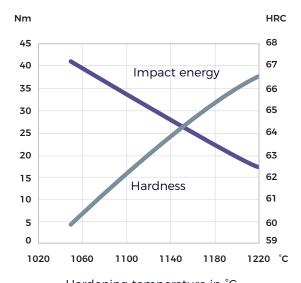
Tool	Hardening	Tempering
Single-edge cutting tools	1220°C	560°C
Multi-edge cutting tools	1180-1220°C	550-570°C
Cold work tools	1050-1150°C	550-570°C

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

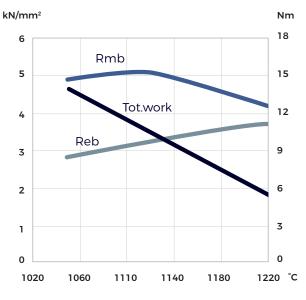
The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.



PROPERTIES

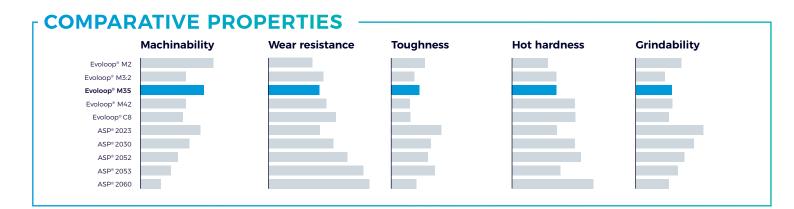
PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g/cm³	8.1	8.0	8.0
Modulus of elasticity kN/mm²	230	205	184
Thermal expansion ratio per °C	-	11.6x10 ⁻⁶	11.9x10 ⁻⁶
Thermal conductivity W/m°C	24	28	27
Specific heat J/kg°C	420	510	600


IMPACT TOUGHNESS

Hardening temperature in °C

Tempering 2 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm


4-POINT BEND STRENGTH

Hardening temperature in °C

Tempering 2 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

