Powder metallurgy HSS

CHEMICAL COMPOSITION

С	Cr	Мо	W	Co	V	Nb
1.08	4.0	2.5	2.5	-	1.8	1.8
					SAFETY	DATA SHEET AVAILABLE

DELIVERY HARDNESS

- Typical soft annealed hardness is 260 HB.
- Cold drawn and cold rolled material is typically 10-40 HB harder.

DESCRIPTION

ASP®2008 is a powder metallurgical tool steel whose unique analysis takes it to a new step by achieving a very good compromise between impact resistance, compressive strength and adhesive/abrasive wear resistance up to 64 HRC.

APPLICATIONS

ASP®2008 is particularly recommended for tools that suffer mainly from mixed adhesive/abrasive wear and chipping/cracking. Such failure mechanism can occur with processed materials such as aluminium, austenitic stainless steels, mild steels, copper and with thick and/or Ultra High Strength Steels.

ASP®2008 is especially efficient in the below mentioned applications:

- cold forging
- blanking and forming
- fine blanking
- powder compaction
- minting of coins
- rolling rolls
- rotary cutters
 - slittina knives
- granulator knives
- encapsulation

FORM SUPPLIED

- flat & square bars
- round bars

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature (25°C) between temperings.

GUIDELINES FOR HARDENING

Tempering temperature in °C Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

ASP®2008 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition)

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g /cm³ (1)	7.9	7.8	7.7
Modulus of elasticity kN/mm² (2)	220	195	175
Thermal expansion ratio per °C (2)	11.0x10 ⁻⁶	13.2x10 ⁻⁶	12.7x10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg °C (2)	420	510	600

(1)=Soft annealed

(2)=Hardened 1180°C and tempered 560°C, 3 x 1 hour

IMPACT TOUGHNESS

Original dimension Ø 80 mm Tempering 3 x 1 hour at 560°C Unnotched test piece 7 x 10 x 55 mm Tested transversal to the bar length

MICROSTRUCTURE

Microstructure comparison of ASP®2008 and ASP®2023

A: MC B: M₆C

Alloyed with Nb, $ASP^{@}2008$ has an outstanding fine and even carbide distribution. Nb gives smaller MC carbides and this is very positive for:

- a better machinability and grindability
- higher surface finish after polishing
- less galling and a good adhesive wear resistance (aluminium, austenitic stainless steels, etc.)
- reduce the grain growth during heat treatments which lead to a better impact resistance
- the abrasive wear resistance thanks to the very hard Nb carbides

COMPARATIVE PROPERTIES

